QUIZ B ANSWERS

1. a.

b. $4 \times 4 \times 4 = 64$

Nov 13-9:42 AM

b.
$$1/10 = 0.1$$

$$10(1/10) = 1$$

3. a. 8 outcomes!

b.
$$1/8 = 0.125$$

$$c. 4/8 = \frac{1}{2}$$

CCC

ICC

CIC

CCI

Nov 13-9:44 AM

4. a.
$$2^{12} = 4096$$

b. none wrong (or all right)

$$c.4095/4096 = 0.99975586$$

5. a. BBB, BGG, GBG, GGB, BBG, GBB, BGB, GGG

b.
$$1/8 = 0.125$$

c.
$$.45 \times .45 \times .45 = 0.0911$$

Nov 13-9:45 AM

6. a. Whew -32 outcomes...I'm not gonna list 'em all! (2^5)

b.
$$1/32 = 0.03125$$

- 7. a. 4/52 = 0.0769
 - b. 13/52 = 0.25
 - c. 1/52 = 0.01923
 - d. Yes, independent

Nov 13-9:45 AM

BELLWORK

pile quiz B at your group

1. On a 13 question true/false test, what is the complement of getting at least 3 questions correct?

2. Michelle and Jim Bob Duggar from 19 Kids and Counting have 20 kids. If the have a 21st child, what would be the total number of possible outcomes for all of their kids?

Nov 13-9:37 AM

Nov 13-9:37 AM

Nov 13-9:37 AM

Nov 13-9:37 AM

Example

If you had Amy, Beth, Carl, Dan, and Earl at a dinner party, how many different ways can you arrange them for dinner?

Example:

ABCDE ABCED ABDCE ABDEC ACBDE ...

Nov 13-9:37 AM

Example

If you had Amy, Beth, Carl, Dan, and Earl at a dinner party, how many different ways can you arrange them for dinner?

FACTORIAL

<u>Factorial Notation</u> - Used with the Fundamental Counting Rule as a shortcut if all items are used.

$$n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 2 \cdot 1$$

Nov 13-9:37 AM

Example

Nov 13-9:37 AM

Nov 13-9:37 AM

BELLWORK

How many license plates are possible if you can have three letters followed by three non-zero digits?

How many three letter words are possible where the first letter is a consonant followed by a vowel followed by a consonant that you did not already use?

At Yogurtology, if you have 2 choices of bowl size, 7 choices of yogurt, and 22 choices of toppings, how many different yogurt combinations are there?

Nov 13-9:37 AM

Nov 13-9:37 AM

Nov 13-9:37 AM

PERMUTATION

Permutations - Use the fundamental counting rule (in factorial form) then eliminate the factors we don't want.

- the number of ways to arrange in order **n** distinct objects, taking them r at a time. Order is important!!!

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Nov 13-9:37 AM

What would happen if you had

What if you had $\frac{12!}{10!}$?

Pretty sweet huh?!?

Nov 13-9:37 AM

<u>Combinations-</u> if order is not important, then use combinations.

Nov 13-9:37 AM

Nov 13-9:37 AM

A department has 30 members and a committee of 5 people is needed to carry out a task. There will be a chairperson, vice chairperson, treasurer, secretary, and technician. How many different committees are possible?

Does order matter? 45

30Ps = 17,100,720

Nov 13-9:37 AM

Example

A department has 30 members and a committee of 5 people is needed to carry out a task. There will be a chairperson and 4 members. How many different committees are possible?

Does order matter?

1. How many ways can you arrange 4 people for a photograph in a straight line?

2. What if I only want 2 of them?

3. What if I just need 2 of the 4 for a picture?

Nov 13-9:37 AM