BELL shaped curve WORK

The average test score was a 70 , with a standard deviation of 10 .

1. What proportion of people scored below a 60% ?

2. What proportion of people scored between a 60% and 80\%?

3. What proportion of people passed the test?

Nov 28-2:24 PM

YESTERDAY...

- We used the Empirical Rule to find probabilities for areas under a normal curve.
- If I asked you the probability that a normal random variable takes a value less than 1 standard deviation above the mean, you should say...
- 84\% (Good job! ©)
- What if I asked you the probability that a normal random variable takes a value less than 1.43 standard deviations above the mean?

WAIT!!

- 1.43 standard deviations...that's not part of the Empirical Rule!

Standard Normal Probabilities

z-scores can be used to calculate the probabilities of a normal random variable using the normal tables in the back of the book

Standard Normal Probabilities

Table A enables us to find normal probabilities

- It tabulates the normal cumulative probabilities falling below the point $\mu+z \sigma$

To use the table:

1. Find the corresponding z-score
2. Look up the closest standardized score (z) in the table.
3. First column gives z to the first decimal place
4. First row gives the second decimal place of z
5. The corresponding probability found in the body of the table gives the probability of falling below the z-score

Example

Find the probability that a normal random variable takes value less than 1.43 standard deviations above μ

- $\mathrm{P}(\mathrm{z}<1.43)=.9236$

The top of the table gives the fecond digit for \mathbf{z}. The table entry is the probability falling

Example

Find the probability that a normal random variable takes a value greater than 1.43 standard deviations above μ :

- $\mathrm{P}(\mathrm{z}>1.43)=1-.9236=.0764$

The top of the table gives the second digit for z. The table entry is the probability falling
below $\mu+z \sigma$ for instance, 0.9236 below $u+1.43 \sigma$ for $z=1.43$.

Nov 28-2:24 PM

Example

Find the probability that a normal random variable assumes a value within 1.43 standard deviations of μ on either side

- Probability below $1.43 \sigma=.9236$
- Probability below $-1.43 \sigma=.0764(1-.9236)$
- $\mathrm{P}(-1.43<\mathrm{z}<1.43)=.9236-.0764=.8472$

Remember this ...

Z-scores can be used to compare observations from different normal distributions

Example:

You score 650 on the SAT which has $\mu=500$ and $\sigma=100$ and 30 on the ACT which has $\mu=21.0$ and $\sigma=4.7$. On which test did you perform better? Compare z-scores

$$
S A T: 1.5 \rightarrow .9332 \underset{.9332}{\stackrel{\leftrightarrow}{\leftrightarrows}}
$$

$$
\text { ACT: } 1.91-0.9719
$$

Remember this ...

SAT:

ACT:

$$
z=\frac{650-500}{100}=1.5 \quad z=\frac{30-21}{4.7}=1.91
$$

Since your z-score is greater for the ACT, you performed better on this exam

In what percentile did you score for each exam?

Remember this ...

Find probability to the left of -1.64 .0505

Find probability to the right of 1.56

$$
\text { 1-. } 9406=.0594
$$

Find probability between -.50 and 2.25 $.9878-.3085=.6793$

How Can We Find the Value of z for a Certain Cumulative Probability?

To solve some of our problems, we will need to find the value of z that corresponds to a certain normal cumulative probability

To do so, we use Table A in reverse:
Rather than finding z using the first column, find the probability in the body of the table

The z-score is given by the corresponding values in the first column and row

How Can We Find the Value of z for a Certain Cumulative Probability?

Example: Find the value of z for a cumulative probability of 0.025?

Look up the cumulative probability of 0.025 in the body of Table A.

A cumulative probability of 0.025 corresponds to $z=-1.96$.

PRACTICE EXAMPLE

Find the value of z for a cumulative probability of 0.975 .

$$
z=1.96
$$

$$
z=1.96
$$

PRACTICE EXAMPLE

The probability that a standard normal random variable assumes a value that is (z) is 0.975 . What is z ?

$$
z=1.96
$$

The probability that a standard normal random variable assumes a value that is $8 z$ is 0.025 .

$$
z=1.96
$$

$z=1.96$
2
The probability that a standard normal random variable assumes a value that is $>z$ is 0.881 .

Look up .119; z=-1.18

The probability that a standard normal random variable assumes a value that is 8 z is 0.119 .

$$
z=-1.18
$$

$$
z=-1.10
$$

What if I asked...

Adult systolic blood pressure is normally distributed with $\mu=120$ and $\sigma=20$. What percentage of adults have systolic blood pressure less than 100?

1587100
$z=-1$

What if I asked...

Adult systolic blood pressure is normally distributed with $\mu=120$ and $\sigma=20$. What percentage of adults have systolic blood pressure greater than 100?

What if I asked...

Adult systolic blood pressure is normally distributed with $\mu=120$ and $\sigma=20$. What percentage of adults have systolic blood pressure greater than 133?

What if I asked...
Adult systolic blood pressure is normally distributed with $\mu=120$ and $\sigma=20$. What percentage of adults have systolic blood pressure between 100 and 133 ?

What if I asked...
Adult systolic blood pressure is normally distributed with $\mu=120$ and $\sigma=20$. What is the $1^{\text {st }}$ quartile?

What if I asked...
Adult systolic blood pressure is normally distributed with $\mu=120$ and $\sigma=20.10 \%$ of adults have systolic blood pressure above what level?

