

Dec 2-8:11 PM

Learning Objectives

- Random Variable
- Probability distributions for discrete random variables
- Mean of a probability distribution
- Summarizing the spread of a probability distribution
- Probability distribution for continuous random variables

Decide right now!

Pay me \$1 and I'll flip a coin.

- If it lands on heads, you win \$5
- If it lands on tails, you win \$0

Pay me $\$ 1$ and I'll flip a coin.

- If it lands on heads, you win $\$ 10$
- If it lands on tails, you lose \$2

Randomness

The numerical values that a variable assumes are the result of some random phenomenon:

- selecting a random sample from a population OR
- performing a randomized experiment

Random Variable

- a numerical measurement of the outcome of a random phenomenon
- use lower case letters near the end of the alphabet, such $a \bar{X}$ to symbolize variable or a particular value of the random variable

$$
x=\text { heads/tails }
$$

- use a capital letters, such as X to refer to the random variable itself

Example

Flipping a coin

Probability Distribution

- Specifies possible values and their probabilities
- Note: It is the randomness of the variable that allows us to specify probabilities for the outcomes

Let's Discuss!

What are the probabilities we specify for a fair die?

Would these be the same if the die was weighted?

Let's Discuss!

It's kind of like if you got a copy of the answer key to the next test...

I couldn't specify the probability of what you would get on that test because you have affected the randomness.

Who Remembers?

The difference between...

Discrete Variables \& Continuous Variables

\# of.pets
\downarrow
nerght height (in)

Discrete

- A discrete random variable X has separate values (such as $0,1,2, \ldots$.$) as its possible outcomes$
- Its probability distribution assigns a probability $P(x)$ to each possible value x :
\& --> For each probability $P(x)$ falls between 0 and 1
$\mathbb{A}^{-->}$The sum of the probabilities for all the possible values of x equals 1

WE DO

Let generate a random single digit on your calculator...
What would x be? generate arandom digit What are the possible values for x ? $0,1,2,3,4,5,6,7,8,9$ What is the probability distribution? $\frac{1}{10}, \frac{1}{10}$, Does this satisfy a probability distribution?

YOU DO

If I was going to roll a die...

What would x be? rolling a die

What are the possible values for x ? $1,2,3,4,5$
 What is the probability distribution? $\frac{1}{6}, \frac{1}{6}, \frac{1}{6} \cdots$ Does this satisfy a probability distribution? $0 \leq \frac{1}{6} \leq 1$

$6\left(\frac{1}{6}\right)=$

Dec 2-8:11 PM

YOU DO

If I were going to have 3 children, how many of them would be girls?

What would X be?

What are the possible values for x ?
What is the probability distribution?
Does this satisfy a probability distribution?

Think About It...

In 2004, the Red Sox won the World Series for the first time since 1918! Many attributed this losing streak to a curse on the team for trading Babe Ruth to the Yankees in 1920.

Typically, the Red Sox have been a good hitting team. In a given game, what can we expect for $X=$ the number of home runs the Red Sox hit?

The following table applies to the team in 2004 for X.

Think About It...

Does the table satisfy the probability distribution?
Number of Home Runs Probability

0	0.23	
1	0.38	
2	0.22	
3	$0.13 *$	
4	$0.03 *$	
5	$0.01 * *$	
6 or more	$0.00 *$	

What is the probability of getting at least 3 home runs?

Think About It....

What is the probability of getting at most 2 home runs?

Number of Home Runs	Probability	
0	0.23	$\not \subset$
1	0.38	$\not \subset$
2	0.22	\nVdash
3	0.13	
4	0.03	
5	0.01	
6 or more	0.00	

Dec 2-8:11 PM

Now...

Let's use the numerical summaries we defined waaaayyyy back in Chapter 2!

- mean
- median
- quartiles
- standard deviation
*it's most common to use mean for center and standard deviation for spread

Think about it...

How can we find the mean number home runs?

Dec 2-8:11 PM

Mean

Each possible value x is multiplied by its probability $P(x)$, and then adding them together.

This is a weighted average, values of x that are more likely receive greater weight, $P(x)$.

Also called the expected value of X.

Does a mean of 1.38 home runs make since? Can you actually have 1.38 home runs in a game?

Example

Take a bet where you put $\$ 100$ down and toss a coin

- Heads means you win $\$ 100$
- Tails means you lose $\$ 50$

What are your expected winnings?

$$
100(.5)+-50(.5)=50+-25=\$ 25
$$

In the long run... you will win $\$ 25$, but this also means you're losing $\$ 75$ from your initial investment which kinda stinks!

Were you right?

Pay me $\$ 1$ and I'll flip a coin.

- If it lands on heads, you win \$5
- If it lands on tails, you win \$0

Pay me $\$ 1$ and I'll flip a coin.

- If it lands on heads, you win $\$ 10$
- If it lands on tails, you lose $\$ 2$

Standard Deviation

The standard deviation of a probability distribution measures it's spread

Standard Deviation

Dec 2-8:11 PM

Continuous

A continuous random variable has an infinite continuum of possible values in an interval

Ex/ time, age, height, weight, etc.

Where we'll pick up in 6.2

As it turns out, 15% of people who commute to work drive longer than 45 minutes to get there...

THINK - PAIR- SHARE

Think about 1 important thing you learned today!
Pair with your neighbor and discuss
Share out!

Homework!

6.1 problems

